Daniel K. Gladish

gladish

Professor

544 Mosler Hall, Hamilton Campus
513-785-3244
gladisdk@MiamiOH.edu
Conservatory Website

Biographical Information

In order to be prepared for the consequences of environmental change on wild and cultivated plants, it is important to understand how plants respond developmentally and physiologically to conditions in the environment. In the past, my interests and research foci have been the effects of temperature on the development and physiology of root systems using physico-chemical techniques and computer image analysis. I completed a study that suggests the environment has influences on internal timing mechanisms (biological clocks) that regulate stage-specific developmental events beyond what can be attributed to simple thermodynamics. More recently we have been studying the effects of flooding on root anatomy and development in legumes, especially vascular aerenchyma formation and programmed cell death. We are now evaluating the cell wall changes and gene expression associated with vascular aerenchyma formation.  I will be continuing studies on the effects of temperature, flooding, and other environmental factors on the developmental anatomy and physiology of roots.

Because I am planning to retire soon, I am not sponsoring any new graduate students.

Courses Taught

  • BIO/MBI 115: Biological Concepts
  • BIO 131: Plants, Humanity, and the Environment
  • BIO 171: Human Anatomy and Physiology
  • BIO 176: Ecology of North America
  • BIO 203: Introduction to Cell Biology
  • BIO 203L: Plant Cell Biology Laboratory
  • BIO 314: Plant and Fungal Diversity
  • BIO 402/502: Plant Anatomy

Recent Publications

  • Pegg, Timothy, Daniel K. Gladish, Robert L. Baker (2021).  Algae to angiosperms: Autofluorescence for rapid visualization of plant anatomy among diverse taxa.  Applications in Plant Sciences 9(6): e11437 doi:10.1002/aps3.11437.
  • Miki, Yasushi, Susumu Saito, Teruo Niki, and Daniel K. Gladish (2020).  3D digital image reconstruction of metaxylem vessels in root tips of Zea mays ssp mexicana (Poaceae) from transverse sections.  Applications in Plant Sciences 8:e11347; doi:10.1002/aps3.11347.
  • Saito, Susumu, Teruo Niki, and Daniel K. Gladish (2020).  Evaluation of metaxylem vessel histogenesis and the occurrence of vessel collapse during early development in primary roots of Zea mays ssp. mexicana: A result of premature programmed cell death?  Plants 9:374; doi:10.3390/plants9030374.
  • Pegg, Timothy, Richard R. Edelmann, and Daniel K. Gladish  (2020).  Immunoprofiling of cell wall carbohydrate modifications during flooding-induced aerenchyma formation in Fabacese roots. Frontiers in Plant Sciences 10:1805; doi:10.3389/fpls.2019.01805.
  • Miki, Yasushi, Susumu Saito, Teruo Niki, and Daniel K. Gladish (2020).  3D digital image reconstruction of metaxylem vessels in root tips of Zea mays ssp mexicana (Poaceae) from transverse sections.  Applications in Plant Sciences 8:e11347; doi:10.1002/aps3.11347.
  • Niki T, Saito S, Gladish DK (2019). A novel thin section preparation and staining protocol to increase contrast and resolution of cell details for light microscopy, Biotechnic and Histochemistry 94:522-526; DOI:10.1080/10520295.2019.1601769
  • Saito S, Niki T, Gladish DK (2019). Comparison of promeristem structure and ontogeny of procambium in primary roots of Zea mays ssp. mexicana and Z. mays ‘Honey Bantam’ with emphasis on metaxylem vessel histogenesis. Plants 8:162; DOI:10.3390/plants8060162.
  • Takahashi M, Niki T, Deem KD, Gladish DK (2016).  Vascular cavity formation enhances oxygen availability during flooding in root tips of Phaseolus coccineus L. primary roots.  International Journal of Plant Sciences (177:277-286).
  • Gladish DK (2015).  Vascular aerenchyma and PCD, in A. Gunawardena and P. McCabe, Eds., Plant Programmed Cell Death, Springer, Berlin.
  • Niki T, Saito S, Gladish DK (2015).  Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K. (Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism.  Protoplasma 251: 1141-1149.
  • Sarkar P, Gladish DK (2012). Hypoxic Stress Triggers a Programmed Cell Death Pathway to Induce Vascular Cavity Formation in Pisum Sativum Roots. Physiologia Plantarum 146:413-426.
  • Niki T, Takahashi T, Gladish, DK (2011). Comparison of the effects of flooding vs. low-oxygen gas on pea (Pisum sativum L. cv. ‘Alaska’) primary roots. Plant Root 5:31-39.
  • Gladish DK, Niki T (2008). Ethylene is involved in vascular cavity formation in pea (Pisum sativum) primary roots. Plant Root 2: 38-45.
  • Sarkar P, Niki T, Gladish, DK (2008). Changes in cellular ultrastructure induced by sudden flooding at 25° C in Pisum sativum (Fabaceae) primary roots. American Journal of Botany 95:1-12.
  • Gladish DK, Xu J, Niki T (2006). Apoptosis-like programmed cell death occurs in procambium and ground meristem of pea (Pisum sativum) root tips exposed to sudden flooding. Annals of Botany 97: 895-902.
  • Niki T, Gladish, DK (2001). Changes in growth and structure of pea primary roots (Pisum sativum L. cv. ‘Alaska’) as a result of sudden flooding. Plant and Cell Physiology 42: 694-702.
  • Gladish DK, Sutter EG, Rost TL (2000). The role of free IAA levels, IAA transport, and sucrose transport in the high temperature inhibition of root system development in pea (Pisum sativum L. cv. Alaska). Journal of Plant Growth Regulation 19: 347-358.
  • Gladish DK, Niki T (2000). Factors inducing cavity formation in the vascular cylinders of pea roots (Pisum sativum L, cv. Alaska). Environmental and Experimental Botany 43: 1-9.